From: Smith, Randy
To: Anderson, Betty Lise

Cc: Leite, Fabio; Reed, Katie; Griffiths, Rob; Greenbaum, Rob; Duffy, Lisa; Hunt, Ryan; Quinzon-Bonello, Rosario;

Tomasko, David; Miriti, Maria

Subject: Revise Certificate Programs in Semiconductor Optoelectronics

Date: Thursday, March 7, 2024 3:03:48 PM

Attachments: <u>image001.png</u>

Betty Lise,

The proposal from the College of Engineering to revise the 3a and 3b Certificate Programs in Semiconductor Optoelectronics was approved by the Council on Academic Affairs at its meeting on March 6, 2024. Thank you for attending the meeting to respond to questions/comments.

No additional level of internal review/approval is necessary. This action will be included in the Council's next <u>Annual Activities Report</u> to the University Senate (July 2024).

The Office of the University Registrar will work you with any implementation issues.

Please keep a copy of this message for your file on the proposal and I will do the same for the file in the Office of Academic Affairs.

If you have any questions please contact the Chair of the Council, Professor Fábio Leite (.11), or me.

Randy

W. Randy Smith, Ph.D.

Vice Provost for Academic Programs
Office of Academic Affairs

University Square South, 15 E. 15th Avenue, Columbus, OH 43201 614-292-5881 Office

smith.70@osu.edu

Assisted by:

Katie Reed

Executive Assistant (614) 292-5672 reed.901@osu.edu

TO: Randy Smith, Vice Provost for Academic Programs

FROM: Graduate School Curriculum Services

DATE: **2/15/2024**

RE: Proposal to Revise the 3A & 3B Certificate Programs in Semiconductor

Optoelectronics in **College of Engineering**

The <u>Electrical and Computer Engineering</u> in the <u>College of Engineering</u> is proposing a <u>Revision</u> to the 3A and 3B Certificate Programs in Semiconductor Optoelectronics.

The proposal was received by the Graduate School on <u>12/05/2023</u>. The combined GS/CAA subcommittee first reviewed the proposal on <u>1/31/2024</u> and requested revisions. Revisions were received on <u>2/06/2024</u>. The proposal is supported for elevation to CAA for review.

205 Dreese Labs 2015 Neil Avenue Columbus, OH 43210

614-292-2572 Phone 614-292-7596 Fax ece.osu.edu

Feb 6, 2024

Dean Miriti Associate Dean of Academic Excellence, Graduate School 247E University Hall 230 N Oval Mall Columbus OH 43210

Dear Dean Miriti,

As requested by the combined Graduate School – Council on Academic Affairs committee, I am submitting the updated proposals for:

3A Grad Certificate for Semiconductor Optoelectronics 3B Grad Certificate for Semiconductor Optoelectronics

The changes are:

- Page numbers and revision date added to footer
- Dangling asterisks removed from table page 2 and table page 4
- Current enrollment in certificates added page 5, Section II.A.
- Inconsistencies in resources related to the labs removed page 6 Section III B

Sincerely yours,

Betty Lise Anderson, Ph.D.

Professor, Electrical and Computer Engineering

The Ohio State University 205 Dreese Laboratory 2015 Neil Avenue Columbus, Ohio 43210

Email: Anderson@ece.osu.edu

Phone: (614) 292-1323

College of Engineering

Undergraduate Education & Student Services

122 Hitchcock Hall 2070 Neil Avenue Columbus, OH 43210-1278

> 614-292-2651 Phone 614-292-9379 Fax

engineering.osu.edu

Memo

To: Dean Maria Miriti, Graduate School

From: Rosie Quinzon-Bonello, Assistant Dean for Curriculum and Assessment

Date: December 5, 2023

Re: Program Changes to the Graduate Embedded and Graduate Standalone certificates in

Semiconductor Optoelectronics

On Monday, December 4, 2023, the College of Engineering Committee for Academic Affairs unanimously approved the Department of Electrical and Computer Engineering program changes to the Graduate Embedded and Graduate Standalone certificates in *Semiconductor Optoelectronics*

Attached is the proposal and executive summary.

Yours sincerely,

Rosie Quinzon-Bonello

Graduate Embedded Certificate in Semiconductor Optoelectronics Revision Feb 6 2024

Betty Lise Anderson, Department of Electrical and Computer Engineering

I. Program definition

A. Title of program

Graduate Embedded Certificate in Semiconductor Optoelectronics

B. Certificate Category and Justification

The reshoring of microelectronics manufacturing, and the anticipated opening of semiconductor fabrication lines in central Ohio by Intel and nationwide by several semiconductor companies is expected to stimulate much interest in students acquiring skills in semiconductor devices, device physics, fabrication, and electronics.

C. Purpose of program

- 1. This certificate can be completed by undergraduates currently pursuing MS or Ph.D. degrees at Ohio State. It is expected that Intel and supporting industries will be seeking students with expertise in semiconductor devices.
- 2. Method of delivery will be primarily in-person, in accordance with current offering of the courses in the certificate Additionally, there is a required laboratory component.
- D. Methods of delivery

The courses are primarily offered in-person currently.

E. Timing

Desired start up is Autumn 2023.

F. Goals

The goal is to provide a mechanism for graduate students in engineering, math, and the physical sciences to demonstrate competency in semiconductor optoelectonic devices to potential employers, either in addition to their major degree outside electrical engineering, or beyond the requirements for their graduate degrees in Electrical and Computer Engineering degrees.

G. Outcomes

Upon completion of the academic certificate in Semiconductor Devices, learners will be better prepared to:

- 1) Understand advanced optical properties of materials and devices
- 2) Understand optical processes in semiconductor devices

H. Minimum requirements

A minimum GPA of 3.0 in the certificate courses is required for completion. Only grades of C- or better may be counted toward the certificate.

Completion of the certificate requires a minimum of 12 credit hours. Of these, ECE 5530 is required. The remaining nine credits can be chosen from a pick list.

I. Methods of delivery

Number	Title	Online	In-	In-
			person	person
				or
				online
5530	Fundamentals of Semiconductors for		Х	
	Microelectronics and Photonics			
5037	Semiconductor Device Fabrication Lab		Х	
5012	Integrated Optics		Χ	
5131	Lasers		Χ	
5132	Photonics		Χ	
5537	Semiconductor Device Characterization and		Х	
	Modeling Lab			
5832	Photovoltaics and Energy Conversion		Х	
6533	Infrared Detectors and Systems		Х	
6535	Semiconductor Optoelectronic Devices		Χ	

J. MOU with ODEE

Not required.

K. List of required and elective courses

1. Required:

ECE 5530 Fundamentals of Semiconductors for Microelectronics and Photonics (3 credits)

<u>Current Prereqs</u>: Prereq: 3030, or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed changes</u>: Prereqs: ECE 3030 or MATSCEN 3271 or grad standing in engineering, Biological Sciences, or Math and Physical Sciences. Also modify course topics to include more device physics and specifically silicon devices; course change request in progress

2. Additional courses (pick 3)

ECE 5037 Solid State Electronics and Photonics Laboratory

(4 credits)

Proposed name change: Semiconductor Device Fabrication Lab

<u>Current Preregs</u>: Prereq or concur: 3030, and acceptance in ECE, MSE or EngPhysics major; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed new prereqs:</u> Prereq or concur: ECE 3030; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5012 Integrated Optics

(3 credits)

Prereq: 3010, or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5131 Lasers (3 credits)

<u>Current Prereqs</u>: Prereq: 3010, and 3030 or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed new prereqs:</u> Prereq: 3010, and ECE 3030 or MATSCEN 3271; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5132 Photonics (3 credits)

<u>Current Prereqs</u>: Prereq: 3010 and 3030 or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed new prereqs:</u> Prereq: 3010, and ECE 3030 or MATSCEN 3271; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5537 Semiconductor Electronics and Photonics Lab

(4 credits)

<u>Current Prereqs</u>: Prereq: ECE 3030; or grad standing in Engineering or Physics. <u>Proposed new prereqs</u>: Prereq: ECE 3030 or MATSCEN 3271; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences

ECE 5832 Photovoltaics and Energy Conversion

(3 credits

Current Preregs: Prereg: 3030, or Grad standing in Engr or Physics.

Proposed new preregs: Preregs: ECE 3030 or MATSCEN 3271 or grad standing in

Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 6533 Infrared Detectors and Systems

(3 credits)

Prereq: 5530 or permission of instructor.

ECE 6535 Semiconductor Optoelectronic Devices

(3 credits)

Grad standing in engineering or physics

L. Length of program compared to similar programs

Comparable. (See Section VI)

M. Semesters of offering

Number	Title	Even	Odd	Odd	Even
		Aut	Spr	Aut	Spr
5530	Fundamentals of Semiconductors for	Χ		Х	
	Microelectronics and Photonics				
5037	Semiconductor Device Fabrication Lab	Χ		Х	
5012	Integrated Optics		Х		X
5131	Lasers			Χ	

5132	Photonics	Х			
5537	Semiconductor Device Characterization and		Χ		Χ
	Modeling Lab				
5832	Photovoltaics and Energy Conversion			Х	
6533	Infrared Detectors and Systems	Χ			
6535	Semiconductor Optoelectronic Devices		Х		Х

N. Transfer Credits

All courses in the Certificate must be taken at Ohio State.

O. Arranged/Individual Study Courses

Arranged individual study courses may not be applied to the certificate.

P. Overlap

- All of the credits in the certificate may be counted toward the graduate degree.
- A student taking a second certificate my count up to 7 credit hours from the first certificate toward the second. If taking a third certificate, up to 7 hours total from the first and second certificate may be counted toward the third.

II. Enrollment

A. Projected enrollment

We have one student enrolled in this certificate so far. With the proposed change for full overlap with the degree, we expect potentially 10-20 per year

1. Will there be problems if too many students enroll in the certificate program?

This is not expected to happen, but if it does, class sizes will increase, or we could potentially open additional sections or offer some electives more often. These classes generally have modest enrollments (≈20-30) so this problem is no anticiapted. The labs may experience bottlenecks and require additional sections to accommodate large enrollments, which in turn requires additional GTAs. We have been promised additional GTA support by the College of Engineering.

2. Will there be problems if too few students enroll in the certificate program?

No.

B. Opportunities for graduates

Due to the CHIPS Act, semiconductor manufacturing in the US is expected to grow rapidly in the next decade. There is a clear need for graduates at all academic levels to support this industry in the coming year. Some of these are

right here in Ohio, with the coming Intel fabs, but there are many additional jobs in places like California, Arizona, Vermont, New York, Oregon, and others.

C. Admission requirements

A minimum graduate GPA of 3.0 to apply. Initially admitted to the university as part of master's or Ph.D. degree program.

III. Sufficient resources

A. Adequacy and availability of facilities and staff

All courses listed above exist and are already offered. They run on the schedule listed under Section I.M.

B. Projected resource needs and plans to meet those needs

The certificate can run and serve students immediately. We have sufficient semiconductor faculty that we can add sections and new courses if there is enough demand. Significant investment has been made to upgrade the facilities and equipment for the 5037 lab.

If demand increases for the labs, we will need more GTAs to run the additional sections. Six GTAs have been promised by the College of Engineering from the Intel funds.

IV. Justifiable expenses

A. Additional Faculty

We currently have enough faculty with the appropriate expertise to offer the certificate.

B. Course additions or deletions

No new courses are needed at this time.

C. Necessary budget adjustments

We can run the certificate with existing resources.

D. Available and anticipated funding

Funding from an Intel grant for teaching assistants and equipment is available. Further resources, if needed, will be arranged in coordination with the college and university.

V. Adequate demand

A. Evidence of sufficient demand by students faculty, general public, and/or business

Intel is opening the first two of eight semiconductor fabrication lines (fabs) in central Ohio, scheduled to open 2025. They are recruiting interns now, who will spend 12-18 months in established Intel plants before returning to Ohio. The initial fabs will employ 3,000 people and more will be needed as the additional

fabs come online. Additionally, there will be other support industries that will need graduates at all levels with semiconductor expertise.

B. Duration of demand (long/short term)

Intel is hiring people now so they can be trained now while the factory is being built, thus the demand is immediate. If the first two fabs are successful, Intel plans to build six more; thus the demand is expected to be ongoing for the foreseeable future.

C. Ability of other programs to meet demand

The Department of Electrical and Computer Engineering has a world-class faculty in semiconductor materials and devices, and already has many specialized courses in these areas. We welcome the opportunity to add courses from other departments to these certificates as they become available, for example in Physics or Materials Science and Engineering.

VI. Competitiveness with other institutions: limited overlap within the University

A. Overlap with other programs or departments

ECE has cordial relationships with Physics as well as Materials Science and Engineering, with multiple faculty members having joint appointments with those departments. We hope to add courses from those departments to these certificates as time goes by. We are trying to get the certificates approved quickly, so are starting with existing ECE courses.

B. Duplication of effort by other areas in the University, another university or another school

- Arizona State University has one embedded graduate certificate semiconductor processing (not optoelectronics). It is online, and appears to have no lab component.
- University of South Florida has an online embedded certificate in Semiconductor Technology and Manufacturing (STEM) (not optoelectronics). It is online, and appears to have no lab component.
- Purdue is rapidly developing a semiconductor degree and certificate, and credentialing work force development.
- None of the above certificates relate specifically to semiconductor optoelectronic devices.

C. Similar programs at other universities in Ohio, or in the United States, and their levels of success

No similar programs exist as far as we know.

Academic (Stand-alone) Graduate Certificate in Semiconductor Optoelectronics

Revision Feb 6 2024

Betty Lise Anderson, Department of Electrical and Computer Engineering

I. Program definition

A. Title of program

Academic (Stand-alone) Graduate certificate in Semiconductor Optoelectronics

B. Certificate Category and Justification

The reshoring of microelectronics manufacturing, and the anticipated opening of semiconductor fabrication lines in central Ohio by Intel and nationwide by several semiconductor companies is expected to stimulate much interest in students acquiring skills in semiconductor devices, device physics, fabrication, and electronics.

C. Purpose of program

- 1. This certificate can be completed by professionals in engineering, math, and the physical sciences. It is expected that Intel and supporting industries will be seeking students with expertise in semiconductor devices.
- 2. Method of delivery will be primarily in-person, in accordance with current offering of the courses in the certificate. Additionally, there is a required laboratory component.
- D. Methods of delivery

The courses are primarily offered in-person currently.

E. Timing

Desired start up is Autumn 2023.

F. Goals

The goal is to provide a mechanism for working professionals in engineering, math, and the physical sciences to demonstrate competency in semiconductor optoelectronic devices to potential employers.

G. Outcomes

Upon completion of the academic certificate in Semiconductor Optoelectronics, learners will be better prepared to:

- 1) Understand advanced optical properties of materials and devices
- 2) Understand optical processes in semiconductor devices

H. Minimum requirements

A bachelor of science in engineering or the physical sciences, or equivalent experience. Participants should be familiar with chemistry, calculus-based physics, and differential equations.

A minimum GPA of 3.0 in the certificate courses is required for completion. Only grades of C- or better may be counted toward the certificate.

Completion of the certificate requires a minimum of 12 credit hours. Of these, ECE 5530 is required. The remaining nine credits can be chosen from a pick list.

I. Methods of delivery

Number	Title	Online	In-	In-
			person	person
				or
				online
				omme
ECE 5530	Fundamentals of Semiconductors for		X	
	Microelectronics and Photonics			
ECE 5037	Semiconductor Device Fabrication Lab		Х	
ECE 5012	Integrated Optics		Х	
ECE 5131	Lasers		Х	
ECE 5132	Photonics		Х	
ECE 5537	Semiconductor Device Characterization and		Х	
	Modeling Lab			
ECE 5832	Photovoltaics and Energy Conversion		Х	
ECE 6533	Infrared Detectors and Systems		Х	
ECE 6535	Semiconductor Optoelectronic Devices		Х	

J. MOU with ODEE

Not required.

K. List of required and elective courses

1. Required:

ECE 5530 Fundamentals of Semiconductors for Microelectronics and Photonics (3 credits)

Prereq: 3030, or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed changes</u>: Prereqs: ECE 3030 or MATSCEN 3271 or grad standing in engineering, Biological Sciences, or Math and Physical Sciences. Also modify course topics to include more device physics and specifically silicon devices; course change request in progress.

2. Additional courses (pick 3)

ECE 5037 Solid State Electronics and Photonics Laboratory

(4 credits)

Proposed name change: Semiconductor Device Fabrication Lab

<u>Current Prereqs</u>: Prereq or concur: 3030, and acceptance in ECE, MSE or EngPhysics major; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed new preregs:</u> Prereq or concur: ECE 3030; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5012 Integrated Optics

(3 credits)

Prereq: 3010, or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5131 Lasers (3 credits)

<u>Current prereqs</u>: Prereq: 3010, and 3030 or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed new prereqs:</u> Prereq: 3010, and ECE 3030 or MATSCEN 3271; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5132 Photonics (3 credits)

<u>Current prereqs</u>: Prereq: 3010 and 3030 or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

<u>Proposed new prereqs:</u> Prereq: 3010, and ECE 3030 or MATSCEN 3271; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5537 Semiconductor Electronics and Photonics Lab

(4 credits)

<u>Current prereqs</u>: Prereq or concur: ECE 3030; or grad standing in Engineering or Physics. <u>Proposed new prereqs</u>: Prereq: ECE 3030 or MATSCEN 3271; or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 5832 Photovoltaics and Energy Conversion

(3 credits

Current preregs: Prereg: 3030, or Grad standing in Engr or Physics.

<u>Proposed changes</u>: Prereqs: ECE 3030 or MATSCEN 3271 or grad standing in Engineering, Biological Sciences, or Math and Physical Sciences.

ECE 6533 Infrared Detectors and Systems

(3 credits)

Prereq: 5530 or permission of instructor.

ECE 6535 Semiconductor Optoelectronic Devices

(3 credits)

Grad standing in engineering or physics

L. Length of program compared to similar programs

We are not aware of any comparable certificates (see Section VI). Length of program is typical of certificate programs in general.

M. Semesters of offering

Number	Title	Even	Odd	Odd	Even
		Aut	Spr	Aut	Spr
5530	Fundamentals of Semiconductors for	Χ		Х	
	Microelectronics and Photonics				
5037	Semiconductor Device Fabrication Lab	Χ		Х	
5012	Integrated Optics		Χ		Х
5131	Lasers			Х	
5132	Photonics	Χ			
5537	Semiconductor Device Characterization and		Х		Х
	Modeling Lab				
5832	Photovoltaics and Energy Conversion			Х	
6533	Infrared Detectors and Systems	Χ			
6535	Semiconductor Optoelectronic Devices		Х		Х

N. Transfer Credits

All courses in the Certificate must be taken at Ohio State.

O. Arranged/Individual Study Courses

Arranged individual study courses may not be applied to the certificate.

P. Overlap

• A student taking a second certificate my count up to 7 credit hours from the first certificate toward the second. If taking a third certificate, up to 7 hours total from the first and second certificate may be counted toward the third.

II. Enrollment

A. Projected enrollment

No one has registered for this certificate yet, but when Intel opens we expect some who might be interested, potentially 10-20 per year

1. Will there be problems if too many students enroll in the certificate program?

This is not expected to happen, but if it does, class sizes will increase, or we could potentially open additional sections or offer some electives more often. These classes generally have modest enrollments (≈20-30) so it is not anticipated to be a problem. The labs may experience bottlenecks and require additional sections to accommodate large enrollments, which in turn requires additional GTAs.

2. Will there be problems if too few students enroll in the certificate program?

No

B. Opportunities for graduates

Due to the CHIPS Act, semiconductor manufacturing in the US is expected to grow rapidly in the next decade. There is a clear need for graduates at all academic levels to support this industry in the coming year. Some of these are right here in Ohio, with the coming Intel fabs, but there are many additional jobs in places like California, Arizona, Vermont, New York, Oregon, and others.

C. Admission requirements

A bachelor of science in engineering or the physical sciences, with a GPA of 3.0, or equivalent experience. Participants should be familiar with chemistry, calculus-based physics, and differential equations.

III. Sufficient resources

A. Adequacy and availability of facilities and staff

All courses listed above exist and are already offered. They run on the schedule listed under Section I.M. We have recently made a large investment in ECE 5037 to update the facilities and equioment.

B. Projected resource needs and plans to meet those needs

The certificate can run and serve students immediately. We have sufficient semiconductor faculty that we can add sections and new courses if there is enough demand.

If demand increases for the labs, we will need more GTAs to run the additional sections. Six GTAs have been promised by the College of Engineering from the Intel funds.

IV. Justifiable expenses

A. Additional Faculty

We currently have enough faculty with the appropriate expertise to offer the certificate.

B. Course additions or deletions

No new courses are needed at this time. The characterization lab is currently (Autumn 2022) being piloted under a group studies (ECE 5195.17). We have applied for a permanent number, ECE 5537.

C. Necessary budget adjustments

We can run the certificate with existing resources.

D. Available and anticipated funding

Funding from an Intel grant for teaching assistants and equipment is available. Further resources, if needed, will be arranged in coordination with the college and university.

V. Adequate demand

A. Evidence of sufficient demand by students faculty, general public, and/or business

Intel is opening the first two of eight semiconductor fabrication lines (fabs) in central Ohio, scheduled to open 2025. They are recruiting interns now, who will spend 12-18 months in established Intel plants before returning to Ohio. The initial fabs will employ 3,000 people and more will be needed as the additional fabs come online. Additionally, there will be other support industries that will need graduates at all levels with semiconductor expertise.

B. Duration of demand (long/short term)

Intel is hiring people now so they can be trained now while the factory is being built, thus the demand is immediate. If the first two fabs are successful, Intel plans to build six more; thus the demand is expected to be ongoing for the foreseeable future.

C. Ability of other programs to meet demand

The Department of Electrical and Computer Engineering has a world-class faculty in semiconductor materials and devices, and already has many specialized courses in these areas. We welcome the opportunity to add courses from other departments to these certificates as they become available, for example in Physics or Materials Science and Engineering.

VI. Competitiveness with other institutions: limited overlap within the University

A. Overlap with other programs or departments

ECE has cordial relationships with Physics as well as Materials Science and Engineering, with multiple faculty members having joint appointments with those departments. We hope to add courses from those departments to these certificates as time goes by. We are trying to get the certificates approved quickly, so are starting with existing ECE courses.

B. Duplication of effort by other areas in the University, another university or another school

No other certificates like this exist as far as we know.

C. Similar programs at other universities in Ohio, or in the United States, and their levels of success

No similar programs exist as far as we know.